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INTRODUCTION 

Nesting a fine mesh within a coarse mesh grid model is 
an economical way to improve the horizontal resolution in 
model forecasts of small-scale weather phenomena. Better 
resolution of intense horizontal gradients can be achieved 
without requiring a fine resolution grid throughout the whole 
model domain, thus saving computer time and memory space. 
Nesting effectively permits useful weather forecasts to be 
made for a longer period of integration than would other- 
wise be possible. Figure 1 shows an example of a nested grid 
mesh structure in both one and two dimensions (Kurihara 
et al., 1979). The ratio of gridbox size for the coarse mesh 
to that for the next finer mesh is always an integer-in this 
case, two. In this particular example, a triply nested system 
was used, where each mesh, except for the innermost one, 
enclosed a finer resolution mesh. A large number of 
researchers (Harrison, 1973; Elsberry and Ley, 1976; Jones, 
1977a; Phillips, 1979; Kurihara and Bender, 1980) have used 
such multiply nested grids primarily to provide a more gradual 
change between grid meshes and to give smoother solutions 
near the boundary. Also, a gradual reduction can save 
substantial amounts of computer time and memory utiliza- 
tion since the finest mesh grid is reduced in size allowing 
a grid of intermediate resolution to serve as a buffer zone 
between the coarse and fine grid. 

2D 

I 

MESH 1 : MESH 2 MESH 3 **'. 

Figure 1. An example of nested grids (dots) in one- 
dimensional (upper paxt) and two-dimensional (lower part) 
domains (Kurihara, et al., 1979). 

The interaction between the fine mesh grid and the larger 
scale model is performed through either one- or two-way in- 
teractive nesting. In the simpler one-way approach, waves 
can exit the coarse grid and enter and affect the fine mesh 
domain, but waves from the fine mesh cannot affect the 
coarse grid model since feedback from the fine grid is 
precluded. According to Elsbeny and Ley (1976), the in- 
herent assumption in this approach is that large-scale mo- 
tions determine the small-scale motions without significant 
feedback from processes occumng within the fine mesh grid. 
In this case, the fine mesh and coarse mesh models usually 
run independently. 

Two-way interacting schemes, which involve more pro- 
gramming effort, allow information from the coarse grid 
model to enter the fine mesh and perturbations from the fine 
mesh to exit into and affect the coarse mesh fields, since the 
predictions on both meshes proceed simultaneously. Grid in- 
teraction is accomplished with boundary conditions specified 
at the interface where the coarse mesh grid (CMG) and fine 
mesh grid (FMG) are coincident. Either values of the depen- 
dent variables or their time tendencies are interpolated in 
space and time to obtain FMG values from the CMG values 
near the interface. Simultaneously, the FMG affects the CMG 
forecast by replacing CMG values at the interface with ones 
(typically averaged) from surrounding FMG points. 

The two-way interactive nested grid method is intuitively 
the more appealing of the two approaches' because the ex- 
change of information between the two grids is more realistic, 
particularly when strong mesoscale disturbances are generated 
within the FMG (Phillips and Shukla, 1973; Anthes, 1983; 
Zhang, et al., 1986), although one-way schemes may actually 
give less noisy solutions (Sundstrom and Elvius, 1979). Tests 
which have been performed to examine the relative benefits 
of either method have employed either the advection, 
"shallow-water'' wave, or lee wave equations (Hamson and 
Elsberry, 1972; Phillips and Shukla, 1973; Clark and Farley, 
1984). Systematic comparative experiments conducted under 
more realistic atmospheric conditions, such as those en- 
countered in sloping baroclinic zones with diabatic effects, 
have not yet appeared in the published literature, as far as 
we know. It is the purpose of this paper to review and con- 
trast different techniques that have been developed to treat 
the lateral boundaries of one- and two-way nested grid 
models, and to suggest an experimental procedure for 
systematically evaluating the most promising of these nested 
grid techniques in a realistic baroclinic setting. The main 
emphasis of this survey is hydrostatic, limited-area models, 
although occasional reference to anelastic models, such as 
those used to simulate lee waves or deep convection, will 
be made where appropriate. 

The general outline of this report is as follows. Relative 
advantages and disadvantages of one- and two-way nesting 
strategies are discussed beginning on page 2. Several 
of the most commonly used lateral boundary schemes 
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applicable to one-way nested gridding will be discussed 
beginning on page 5 .  Various two-way nested schemes are 
reviewed beginning on page 11. Next we discuss strategies 
for simultaneously initializing the fine and coarse meshes in 
one- and two-way nested grid models. Finally, recommen- 
dations for systematically evaluating the most appealing 
nested grid techniques using both adiabatic and diabatic ver- 
sions of the Mesoscale Atmospheric Simulation System 
(MASS) numerical weather prediction model at NASA/GSFC 
(Kaplan, et al., 1982) are suggested. 

ONE-WAY VS. TWO-WAY NESTING 
STRATEGIES 

In principle, one-way nesting schemes are much simpler 
to encode than two-way nesting schemes and may be ade- 
quate in meteorological cases where the small-scale atmos- 
pheric phenomenon of interest does not impact significantly 
on its surrounding environment. An example of this type of 
weather event might be a sea-breeze type circulation where 
the feedback to the synoptic scale is minimal. Contrastingly, 
FMG boundary values are averaged and fed back to the CMG 
in a two-way nesting scheme. This helps the model predic- 
tions on each mesh to be more consistent with each other 
than would be possible with one-way nesting, and also allows 
the coarse grid mesh to respond to meteorological phenomena 
that can significantly impact their surroundings, such as hur- 
ricanes, mesoscale convective clusters, or squall lines. 
Although the two-way interaction approach is appealing from 
a physical point of view, one-way techniques may actually 
give smaller errors because waves leaving the FMG may 
generate fictitous gravity waves and other “noise” upon 
entering the CMG in a two-way scheme (Sundstrom and 
Elvius, 1979), as is discussed below. 

Well-Posed Boundary Conditions 
In order to better understand the kinds of errors that can 

be generated at the interface between the two different grid 
meshes, and why such emrs  are generated in the first place, 
it is necessary to consider what should be the proper formula- 
tion of boundary conditions for hted-area models. This critical 
question was addressed in an excellent survey article by 
Sunstrom and Elvius (1979). Fundamentally, the system of 
equations describing the fluid are “well-posed” if the initial 
and boundary values determine the solution uniquely for the 
entire period of integration and if small emrs  in these data 
produce emrs of a comparable size in the solution. The non- 
hydrostatic form of the linearized Eulerian equations of motion 
are well-posed because boundary conditions can be properly 
fornulatixi for this hypehlic system of pattd differentid qua- 
tions. A combination of (1) specged boundary values for the 
tangential velocities and potentid temperature at the infiw bun- 
dary and (2) normal velocity and pressure determined from the 
characteristics of the system at both the inflow and outflow 

produce a well-posed problem for this system in three space 
dimensions (Oliger and Sundstrom, 1978). 

Unfomnately, the introduction of the hydrnstatic approxima- 
tion in the primitive equations, and, moreover, heat transfer 
and viscous processes in the atmospheric boundary layer, 
makes the Eulerian system no longer hyperbolic, except in 
the special case of the barotropic “shallow-water” equations. 
Therefore, it is no longer a straightforward matter to com- 
pute the characteristics within the FMG of a nested limited- 
area model utilizing the primitive equations (Sundstrom and 
Elvius, 1979). Most likely, it is for this reason that com- 
parisons between one- and two-way interaction schemes have 
been made with hyperbolic systems of equations (Harrison 
and Elsberry, 1971; Phillips and Shukla, 1973; Clark and 
Farley, 1984). It is not obvious, therefore, that conclusions 
drawn from those experiments about the relative superiority 
of two-way schemes, can be automatically applied to more 
general atmospheric situations. 

Sources of Boundary Condition Errors 
Since no formulation of boundary conditions for the 

hydrostatic primitive equations can be well-posed, all nesting 
techniques will produce at least some error. This is true for 
both finite-difference and finite-element methods, although 
Raymond and Garder (1976) showed that use of a dissipative 
Galerkin procedure can greatly reduce the noise. The sources 
of these errors include everything from basic mathematical 
inconsistencies to the complicated manner in which the boun- 
dary conditions may be computed. 

Emrs are produced in two-way schemes due to the fact 
that different mesh sizes act like different propagation media 
to the waves, i.e., the slopes of the characteristics are affected 
(e.g., Phillips and Shukla, 1973; Sundstrom and Elvius, 1979). 
The size of this error source naturally depends upon the ratio 
of the grid sues. These differences in phase velocity generate 
false waves of atl kinds at the interface, which are reflected 
back into the FMG, perhaps to become trapped for a long time 
in the interior grid (Matsuno, 1966). In addition, some waves 
which are resolvable on the FMG but not the CMG may be 
aliased and suffer drastic amplitude reduction as they enter the 
CMG. These two e m r  sources-characteristics alteration and 
change in resolution-affect only two-way interaction schemes. 
The small-scale noise near the interface and within the FMG 
is a combination of interference between waves crossing the 
interface from both grids, scattering of waves poorly resolved 
by the coarse grid, and reflection of waves entering the CMG 
back into the FMG. Jones (1977b) and others have found that 
wavelengths smaller than six coarse gridlengths are totally 
reflected and trapped within the FMG. 

Errors in both one-and two-way interaction techniques are 
due to overspecifying the boundary conditions, resulting in 
erroneous wave reflections at the interface. By 
“overspecification” it is meant that more values are used 
from the coarse mesh than are actually required to extrapolate 
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(or “blend”) those values to (with) the FMG values. Sundswm 
and Elvius (1979) state the optimum boundary conditions for 
one-way schemes should have these properties: 

1 ) “The boundary conditions should determine the major 
quasigeosmphk paa of the solution accurately when 
the motion is inward. At outflow, this type of wave 
should pass through the boundary without any large 
Ieflection as computational modes or as pvi ty  waves.” 

2) “Fast-moving gravity waves generated in the interior 
should pass through the boundary, if possible. At least 
they should not be reflected and amplified by the 
boundary conditions.” 

None of the one-way interaction schemes to be discussed in 
this report satisfy both of these conditions. Sundstr6m and 
Elvius (1979) suggest that use of the following extrapola- 
tion formula on the outflow boundary satisfies these condi- 
tions, at least for the advection and shallow-water equations: 

where 4; represents any prognostic variable at the boundary 
point B at time t. This equation describes the characteristics 
of these hyperbolic linear systems. Of course, it remains to 
be determined how effective this approach would be for non- 
hyperbolic systems, and whether the general principle of 
“specify at the inflow boundary, calculate the characteristics 
at the outflow boundary” applies to the hydrostatic primitive 
equations. Indeed, since the characteristics of these equation 
systems are not known, some kind of substitute method must 
be employed, such as extrapolation, calculation of some kind 
of “representative” wave phase velocity, or reliance upon 
more pragmatic, engineering strategies. 

Baumhefher and Perkey (1982) defined two types of er- 
rors that occur at the interface between two different sized 
meshes: those that are generated by the boundary formula- 
tions, and those that are caused by incorrect data specifica- 
tion at the boundary. They concluded that both error sources 
contribute equally to the total error in one-way nested mod- 
els. Boundary formulation errors arise from problems in 
“blending” the solutions from the two grids used in one-way 
nested models, and in defining the “interface conditions” 
used in two-way nested models (to be described in detail later 
in this paper). Boundary specification errors, on the other 
hand, are caused by using incorrect values in the specifica- 
tion of the boundary values, the result of errors in the forecast 
by the coarser mesh model near the fine grid model boun- 
dary. Pielke (1985) has shown that specification emrs will 
introduce a fictitious acceleration throughout the entire model 
domain, the error being inversely proportional to domain size. 

Pragmatic Determination of “Optimum” Boundary 
Conditions 

The lack of purely mathematical principles to guide the 

development of well-posed boundary conditions in hydrostatic 
limited-am models employing the diabatic, viscous primitive 
equations has motivated modelers to consider alternative 
philosophies for choosing “optimum” boundary conditions. 
For example, Zhang et al. (1986) suggest the optimal inter- 
face procedure for minimizing boundary formulation errors 
has the following properties: 1) all resolvable waves must 
propagate across the interface smoothly without generating 
significant noise, and 2) mass, momentum, and total energy 
exchanged between the two grids must be conserved. Typi- 
cally, smooth wave passage is attainable only by employing 
some method of noise control. The following types of boun- 
dary conditions, described in detail beginning on page 5 ,  have 
been used both as interface conditions and to control noise 
in one-way nesting systems. 

sponge boundary dampening and tendency blending 
schemes (Perkey and Kreitzberg, 1976; Miyakoda and 
Rosati, 1977) 
radiation schemes (Orlanski, 1976) 
flow relaxation schemes (Davies, 1976; Leslie, et al., 

extrapolation type schemes (Williamson and Brown- 

Jones (1977b) and Zhang et al. (1986) discuss four general 
ways to control noise in two-way systems: 

1981) 

ing, 1974). 

using smoothing operators (Jones, 1977a; Phillips, 
1979) 
enhancing eddy diffusivities in the difference equations 
(Harrison and Elsbeny, 1972; Elsbeny and Ley, 1976; 
Kurihara and Bender, 1980: Zhang et al., 1986) 
modifying the interface condition to remove 
overspecification (Jones, 1977b) 
selecting a time integration damping scheme (Ookochi, 
1972; Phillips, 1979; Kurihara, et al., 1979) 
employing a mesh separation scheme (Kurihara, et al., 
1979; Phillips, 1979: Zhang, et al., 1986). 

Some combination of these approaches is often used. For ex- 
ample, the mesh separation technique involves physically 
separating the boundary along which information from the 
CMG enters the FMG from that along which occurs the feed- 
back of the FMG to the CMG (Kurihara et al., 1979; Phillips, 
1979: Zhang, et al., 1986). This strategy separates the in- 
terface from the immediate impact of boundary formulation 
errors @. 12ff), yet at least another noise control method must 
be used in conjunction with it. 

The second optimal interface condition of mass, momen- 
tum, and energy conservation across the interface can be 
satisfied only if the interpolation formula used to derive boun- 
dary values for the FMG from the CMG is reversible as the 
averaging formula used to calculate the boundary points for 
the CMG from the FMG. This procedure has been used in 
a hydrostatic model by Kurihara el al. (1979) and in an 
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anelastic model by Clark and Farley (1984) to eliminate 
spurious mass accumulation at the boundary. The latter study 
found the conservative interface conditions to result in a 
dramatic reduction in errors, although such improvements 
may be peculiar to anelastic models. Zhang et al. (1986) 
sacrificed the conservation condition in a hydrostatic model 
for the sake of simply obtaining a smooth solution at the 
interface. 

Comparison Tests Between One- And Two-way 
Nesting Schemes 

A limited number of tests using simple hypeh l i c  wave 
systems of equations have been performed thus far to study 
which nesting schemes may be superior. Caution must be 
exercised in attempting to generalize these results to hydro- 
static models that utilize the fully viscous, diabatic primitive 
equations, as discussed earlier. In spite of this limitation, it 
is instructive to consider these studies and the general method 
of verification employed therein. 

Harrison and Elsberry (1972) remarked that in an ideal 
nested grid system, the solution on the nested FMG part of 
the domain must exactly replicate that for a model which uses 
the FMG resolution everywhere. This verification technique 
for testing various nested grid strategies has been used by 
Hamson (1973) and Kurihara and Bender (1980). In prac- 
tice, however, this type of verification is difficult to 
accomplish in three dimensions because of the large amount 
of grid points needed for the extended fine mesh control run. 
The most popular method of verification has been to 
analytically initialize the nested grid model and compare the 
forecast to the analytic solution. Harrison and Elsberry (1972) 
performed tests with a one-dimensional, linear, advection 
wave equation model, while Phillips and Shukla (1973) us- 
ed a two-dimensional, hydrostatic, shallow water wave model 
to compare one- versus two-way nested grid schemes. More 
recently, Clark and Farley (1984) completed tests with a two- 
dimensional anelastic model of lee waves. Harrison and 
Elsberry (1972) found that the two-way interactive boundary 
conditions performed much better, in the sense that a much 
smoother solution than that given by the one-way nested 
model was obtained (Figure 2). They suggested that the in- 
terface noise in the one-way scheme would lead to aliasing 
and perhaps computational instability in a nonlinear model. 
However, no smoothing was utilized to control boundary for- 
mulation noise. Furthermore, the ratio of the time steps used 
in the two grids (AtflAtJ was not equal to the ratio of the 
grid sizes ( W A X , ) ,  as it should be for consistency. Thus, 
their conclusions may not have truly g e n e d  implications. 

The Phillips and Shukla (1973) experiment showed a 
modest improvement in the solution when using the two-way 
nested grid model (Figure 3), particularly in the geostrophic 
part of the simulation. Clark and Farley’s (1984) results from 
their anelastic lee wave simulations revealed a more dramatic 

w 
0 - 
d 

t 
n J 

Figure 2. Numerical (solid) and exact (dashed) solutions after 
4ooo time steps of inteption of the onedimensional linear 
advection equation model of Hanison and Elsbeny (1972). 
Two-way (one-way) interactive boundary conditions used 
in upper (lower) figure. Extent of CGM model domain 
equals wavelength of sinusoidal wave. 
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Figure 3. Distribution of horizontal divergence ( ’) 
for the positive gravity wave simulations on a basic cur- 
rent used by Phillips and Shukla (1973). Case 0 is the 
analytic solution, case I is the solution with a one-way 
nested grid, and case II is that with a two-way nested grid. 
See Tables 4-6 for model details. 
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improvement in the two-way interactive system compared to 
the one-way nested grid model. Their FMG prediction at 4 hrs 
of vertical motion(w), perturbation potential temperatuni? (e’), 
and vertical vorticity component (1) using both kinds of 
nested grid systems are shown in Figure 4. Irregularities and 

ONE-WAY TWO-WAY 
8 

4 

0 
8 

E 
s 4  
N 

0 

I 60 9030 60 90 
X (km) 

Figure 4. The time development of w, e’, and q from the 
two-dimensional anelastic wave experiments of Clark and 
Farley (1984). Left (right) column shows results using 
a one-way (two-way) nested grid. Plates (a) and (b) show 
w after 4 hours with a contour interval of 0.05 d s ;  (c) 
and (d) show 8’ at the same time with a contour interval 
of 0.1K; (e) and ( f )  show q with a contour interval of 
6 x 10-4s-’. 

multiple local extremes found in the one-way simulations are 
the results of poor upper boundary conditions taken from the 
CMG. Comparing Phillips and Shukla’s results, Clark and 
Farley ascribed their more significant improvement in two- 
way over one-way nesting systems to the elliptical nature of 
the anelastic system, although they did not elaborate upon 
their reasoning. Therefore, we do not know whether these 
results may apply to a hydrostatic nested grid framework. 

In summary, it appem that no investigation thus far has 
convincingly demonstrated the clear superiority o f  two-way 
over one-way nesting schemes in hydrostatic primitive equa- 
tion models. There is an even gmter  lack of  demonstration 

for numerical predictions o f  weather systems with real data 
initialization. Intuitively, one might expect an improved per- 
formance by allowing the two grids to interact with one 
another, but this needs to be demonstrated using both 
adiabatic and diabatic model predictions o f  a wide variety 
o f  atmospheric phenomena. 

A SURVEY OF ONE-WAY 
INTERACTIVE SCHEMES 

Four general types of one-way nesting strategies have been 
proposed and are reviewed here: sponge blending, flow relax- 
ation, advective extrapolation, and radiation. Mixed combina- 
tions of these more general schemes are addmsed also. 

Sponge Blending 

Sponge blending-type boundaries are pragmatic engineer- 
ing approaches to incorpomting the large-scale information 
from the c o m e  model into the fine grid. Formulation of this 
scheme involves modifying the boundary variable tenden- 
cies so that the coarse- and fine-grid tendencies are weighted 
or “blended” together in a zone near the boundary of the 
FMG. Enhanced filtering or diffusion is used near the boun- 
dary to dampen advecting wave disturbances as they approach 
the boundary zone. Consequently, reflection of spurious 
shorter wavelength noise back into the fine grid is minimized, 
while leaving the main solution unaltered. This type of 
scheme, first employed by Perkey and h i t zbe rg  (1976), has 
been used extensively in nested meteorological models. 

Tendency blending is incorporated within a boundary zone 
of a one-dimensional model by using 

.TI = W(x) ;I + [(l-W(x)] g1 (2) 
a t  x X X 

where 9 represents the specified c o m e  grid variable and + 
and $‘denote the fine-grid model variable before and after 
blending, Iespectively. Values of the weighting coefficients, 
W(x), used by several investigators are shown in Table 1. 
This shows that the tendencies for all the prognostic variables 
at the boundary point of the nested grid are totally specified 
by the coarse-grid model, whereas inward of this point, the 
tendencies are progressively weighted toward the fine-grid 
model forecasts. 

The system is completed by employing some type of low- 
pass filter or increased diffusion near the boundary to act as 
a “sponge.” Filtering or diffusion duces the efiwlsMls reflec- 
tion of waves entering the boundary mne, thus giving the 
desired effect that the waves exit the fine grid model through 
the boundary with little alteration in form. The sponge also 
acts to reduce shofl-wave energy caused by the overspecifica- 
tion of the prognostic variables at the boundary. 
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Model Reference 

Perkey and Kreitzberg (1976) 
Baumhefner and Perkey (1982), 

NMC - LFM 

Leslie, et al. (1981)* 

Pielke (1985) warns, however, that the sponge should not 
be applied abruptly since erroneous reflection can result. Most 
of the filtering or diffusion forms used in the sponge-type 
schemes reviewed here appropriately used a gradually in- 
creasing smoother in a region near the boundary (Table 2). 
Perkey and Kreitzberg (1976) used a smoother-desmoother 
filtering function to remove the short-wave energy near the 
boundary in their primitive equation model runs, while a dif- 
fusion approach was employed in tests conducted with the 
advective wave equation (with similar results). Baumhefner 

Model Grid Point 

B B- 1 B-2 B-3 B-4 B-5.. .B-L/2 

0.0 0.40 0.70 0.90 1.00 1 .00 
0.0 0.40 0.70 0.90 1 .00 1 .OO 

0.0 0.33 0.67 1.00 1.00 1 .OO 

0.0 0.46 0.76 0.96 0.96 1 .OO 

~ ~ 

and Perkey (1982) gradually increased the horizontal diffusion 
coefficient to five times the normal value as the boundary 
was approached. Miyakoda and Rosati (1977) used both a 
filter (termed “boundary adjustment”) and horizontal diffu- 
sion in their sponge version of a nested grid model. However, 
no blending of the large-scale tendencies was included. In- 
stead, the large-scale variables were simply specified at the 
fine-grid boundary point. This approach was later shown to 
be unstable by Davies (1983), who also pointed out that 
significant wave reflection occurs when blending is not used. 

TABLE 2. Description of filtering or diffusion used in the boundary zone for sponge-type one-way nested grid models. 
represents any prognostic variable (at grid point i) “B” indicates the boundary grid points, while “I” refers to interior 

grid points. “K” is the diffusion coefficient. Atf and Atc are fine and coarse grid timesteps, respectively. 

Authors 

Baumhefner 
and Perkey 
( 1982) 

Miyakoda 
and Rosati 
(1977) 

Perkey and 
Kreitzberg 
(1976) 

Perkey and 
Kreitzberg 
(1976) 

qested Grid 
nodel Type 

3-D 
Primitive 
equation 

3-D 
Primitive 
equation 

1 -D 
Advective 
wave 
equation 

2-D 
Primitive 
equation 

Filtering Equation 

None 

None 

k = O i  + Kd+i+1-24i++i-l) 

B-1-B-6 
K, = .25 on smoothing step 

Diffusive Operator 

Type 

2nd order 

_ _ _  

2nd order 

4th order 

--- 

Boundary Application 

B-1: p=0.2400 
B-2+B-5 p=O.O600 
B-6: p=0.0325 

>B-6: fi=0.0050 

vhere plh = 2K At/(Ax$ 

None 

Frequency of 
Sponge Application 

2Atf 

Atf 

I: 15Atf 
B:5Atf 

I : 15Atf 
B : 5Atf 

4 
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Moreover, since Miyadkoda and Rosati did not gradually in- 
crease the viscosity near the boundary (Table 2), an addi- 
tional source of spurious wave reflection at the interface 
existed. In fact, they found that significant noise was 
generated when only a horizontal diffusion scheme with no 
filter was used. This is the reason why they found that a filter- 
ing function was also needed to obtain satisfactory results. 
It is likely that much of the noise could have been reduced 
had the diffusion coefficient been increased gradually and 
tendency blending been used. 

A linear stability analysis must be performed when us- 
ing a diffusion-type damping scheme. Perkey and Kreitzberg 
(1976) incorporated a diffusion scheme into a set of ex- 
periments that employed a simple one-dimensional advec- 
tive wave equation. The accompanying stability analysis 
showed that the following criterion needed to be satisified 
to maintain linear stability at all points greater than one FMG 
grid distance in from the boundary: 

1  AX)^ K Q -  - 
16 2At (3) 

where K is a diffusion coefficient, At  is the model timestep, 
and Ax represents the grid spacing. This result was obtained 
for a fourth-order diffusive filter, which was used near all 
boundary points, except for the point adjacent to the boun- 
dary (B-1) where second-order diffusion was used. 

Baumhefner and Perkey (1982) and Miyakoda and Rosati 
(1977) both experimented with the magnitude of the diffu- 
sion Coefficient near the boundary. Their results showed that 
when the diffusion was enhanced too strongly, boundary for- 
mulation errors also increased. The increased loss of large- 
scale wave information entering the fine-grid domain (caused 
by overdampening) was blamed for the errors. On the other 
hand, when the diffusion was too weak, considerable small- 
scale noise was generated at the interface. Baumhefner and 
Perkey (1982) concluded that the final choice of diffusive 
operator in sponge blending schemes must be made very 
carefully. Thus, a low-pass filter, where only shorter waves 
are damped out while longer wave features remain, could 
perhaps be better suited than a diffusion scheme. 

Baumhefner and Perkey (1982) have also pointed out that 
for difision to be effective, blending must be done before 
the difision sponge is applied. This was shown by first 
writing the tendency equation for a one-dimensional diffu- 
sion (FMG) model as 

(4) 

and then applying the blending equation (2) to yield 

This shows that when blending is done on a tendency that 
has already been subjected to diffusion, the effect of diffu- 
sion is reduced by the weighting term. Comparison of model 
results in Table 2 does not indicate any agreement, however, 
as to how frequently to apply the sponge once the variable 
tendencies have been blended. 

Experiments have been performed by some of these 
workers to determine the optimal frequency for blending (up- 
dating the boundary values of) the nested and coarse grid 
tendencies. Table 3 summarizes the various frequencies at 
which the boundary values have been updated in the past and 
gives details on the models used in these experiments. The 
basic rule is that the boundary must be updated frequently 
enough so that wave aliasing does not occur and that waves 
entering the FMG from the coarser grid model are properly 
resolved. This guideline would suggest that boundary values 
must be updated at least once every coarse-grid timestep. In 
one extreme case where Perkey and Kreitzberg (1976) used 
an update frequency of 45 coarse-grid time steps, a strong 
decrease in incoming wave amplitude resulted. This problem, 
of coarse, is one to be avoided by any boundary condition 
scheme used, not only sponge schemes. 

Most of the investigators cited in Table 3 have found the 
sponge blending scheme to be stable in that errors did not 
grow rapidly during a model run. This scheme has also been 
found to be simple to program and easy to use. The reflec- 
tion of spurious waves back into the center of the FMG do- 
main is never completely eliminated, although it can be con- 
siderably diminished by using an appropriate sponge. Two 
pragmatic considerations have also been given by both 
Baumhefner and Perkey (1982) and Pielke (1985), who 
recommend: (1) enlarging the nested-grid model domain as 
far as possible past the area of interest to delay any contarnina- 
tion from the boundary, and (2) extending the boundary away 
from areas of strong activity to avoid errors caused by rap- 
idly changing fields in the CMG, i.e., large-tendency values. 

Flow Relaxation 
This type of scheme, which was first developed by Davies 

(1976), is similar to the sponge type condition, in that pro- 
gnostic variables in a zone near the boundary are forced to 
relax toward the large-scale data fields. However a relaxa- 
tion coefficient is used instead of a smoother in the blending 
formulation and the prognostic equation for a variable + is 
written in terms of a modified advection equation as 

where r(x) is the relaxation coefficient and @ is the exter- 
nally specified value of at the boundary. The relaxation 
coefficient is gradually decreased toward the boundary so that 
the effect is not felt abruptly. A diffusion term like the one 
used in some of the sponge conditions may also be added 
to this equation. 
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TABLE 3. Model type, grid spacing, timesteps, and boundary data update frequency used in various one-way nested grid 
systems employing the primitive equations. 

Authors 

Perkey and 
Kreitzberg (1976) 

Miyakoda and 
Rosati (1977) 

Baumhefner and 
Perkey (1982) 

Kaplan, et al. 
(1983) 

Leslie, Mills, 
and Gauntlett 
(1981) 

Williamson and 
Browning (1974) 

Miyakoda and 
Rosati (1977) 

Model Type 

Fine Coarse 

2-D 2-D 

3-D 3-D 
Barotropic Hemispheric 

3-D 3-D 
Hemispheric 

3-D 3-D 
(LFM) 

3-D 3-D 
Hemispheric 

3-D 3-D 
Global 

Circulation 

3-D 3-D 
Barotropic Hemispheric 

Fine Grid Coarse Grid 
Ax At Ax At 

(km) (min) (km) (min) 

Sponge - Type Boundaries 

60 2 120 4 

135 2.5 540 10 

-275 2.5 -550 5 

14 0.25 58 1 

Flow Relaxation Type Boundaries 

125 18 250 36 

ExtraDolation Tvoe Boundaries 

-69-275 --- -138-550 --- 

Radiative Type Boundaries 

135 2.5 540 10 

To solve (6) for + ' + I ,  Leslie et al. (1981) suggest first 
estimating its value (+k' ') by solving the prognostic equa- 
tion for + t + '  with the boundary relaxation term excluded. 
The final solution for 4'" is found by time weighting as 
follows: 

(1 - a ) + t T  + a@' , (7) + t + l  = 

where a is calculated in terms of r as 

a = 2rAt/(l+2rAt) . (8) 

The nested grid system used by Leslie et al. (1981) is sum- 
marized in Table 3. The values of the relaxation coefficients 
are given in Table 1. 

The boundary relaxation scheme can only be used where 
the predicted winds at the boundary are directed into the 

21 1 

41 1 

2/ 1 

4/ 1 

2/ 1 

411 to 211 

41 1 

Frequency of 
Boundary Data 

UDdate 

5Atf 

Atc 

model. On the outflow boundary, another scheme (such as 
the radiative scheme) must be used. Boundary conditions that 
depend on the wind direction at the boundary will be in- 
herently troublesome when the wind is nearly parallel to the 
boundary or when there is both inflow and outflow on a boun- 
dary. Although Davies (1983) found this scheme to be stable, 
the scheme has not been thoroughly tested for more general 
situations such as those encountered with parallel flow at the 
boundary. 

Advective Extrapolation 

This type of boundary condition, described and used by 
Williamson and Browning (1974), determines the prognostic 
variables by one of two methods depending on the wind direc- 
tion at the interface boundary. When the CMG winds are 
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directed into the FMG domain, the fine-grid prognostic 
variables at the boundary are specijed from the CMG by a 
simple linear interpolation in space and time. When the 
coarse-mesh winds are directed out of the fine-grid domain, 
the boundary variables are extrapolated from the fine-grid 
interior to the boundary. This is simply obtained by horizontal 
advection by the large-scale wind. Horizontal diffusion is 
also increased at the closest two boundary points by a factor 
of four and at the next two interior points by a factor of two. 
The Williamson-Browning numerical model is summarized 
in Table 3. 

This scheme, like flow relaxation schemes, relies upon 
the wind direction at the boundary in order to know whether 
to specify or extrapolate values. The boundary update oc- 
curs only at the boundary, providing no transition zone. 
Baumhefner and Perkey (1982) compared this scheme to the 
sponge blending condition and found the Williamson- 
Browning technique to be unstable, especially when the fine- 
grid spacing was much less than the coarse-grid spacing. 
Miller and Thorpe (1981) also found this extrapolation 
scheme to be unstable. Because of these problems, this boun- 
dary condition scheme will not be tested in the MASS model. 

Radiation 

This technique attempts to minimize the reflection of out- 
ward propagating waves back into the model domain by 
allowing them to radiate freely outward through the boun- 
dary. The radiation scheme is implemented in the east-west 
direction, for example, with a Sommerfeld (1964)-type wave 
equation of the form 

a +  a +  
- a t  =-c+- a x  

(9) 

Here + is any prognostic variable and C+ is the empirically- 
derived ‘‘typical phase velocity” for each variable, rather 
than an advection velocity as used in the previous two 
schemes. Orlanski (1976) introduced this approach by first 
solving for C+ using a centered-centered finite difference 
approximation 

t 
(+B-1 - 0 B-1 cg = - 

t-2 2At 
( J B - 1  + + B - l  

where B is the boundary grid point, B- 1 is the next FMG 
grid point in from the boundary, etc., and C+ is calculated 
for every prognostic variable under the limits that if C+ 2 
AxlAt, it is set to AxlAt, whereas if C+ < 0 it is set to zero. 
Next, Orlanski reintroduced (9) in centered difference form, 
but now solved for + at the next time step to update the boun- 
dary variables: 

+t+1 = [l-(At/Ax) C+I 0L-l + 

[ 1 + (At/Ax) C+] B 

(AtlAx) C+ t 
2 ‘B-1 ’ [ 1 + (At/Ax) C+] 

The radiation condition is used to extrapolate waves only on 
boundaries where waves are propagating outward. Variable 
tendencies still have to be specified on an inflow boundary. 
The direction of wave movement is found from the phase 
velocity: if C4 <0, an inflow boundary is defined, whereas 
if C + X ,  an outflow is defined. Note that the extrapolation 
technique discussed earlier is a simplification of (1 la) 
resulting from setting C+ = AxlAt, which yields 

t 
- +B-l  

Because the use of centered differencing near the boun- 
dary is inappropriate, Miller and Thorpe (1981) suggested 
an improvement to the Orlanski scheme. They used a for- 
ward upstream finite difference form of the equations for + 
and Cg, so that (1 la) becomes 

ru m 
where r =C+AtlAx. The most accurate form of r , in terms 
of truncation errors, was found to be a wmbination of dif- 
ferent forward upstream equations for r , 

ru 
r = r> + G  -6 

where 

and 

H e r e e l  a n d e 2  are modifications to the time and space 
levels used in the usual form of the forward upstream equa- 
tion f o r e .  A Taylor expansion performed on the truncation 
error showed that this form of the finite difference approx- 
imation to the radiation condition was third-order accurate, 
whereas the Orlanski form was only second-order accurate. 

The radiation scheme studies of Orlanski (1976) and 
Miller and Thorpe (1981) are based on theoretical analyses, 
but not on the characteristics of the equations. Therefore, as 
Sundstrom and Elvius (1979) remarked, the solution will be 
polluted with errors if it is dominated by more than one wave 
mode, which, of course, naturally occurs in primitive equa- 
tion models. Miyakoda and Rosati (1977) attempted to 
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extend the Orlanski scheme by applying it as an interface 
condition within a primitive equation model (Table 3). The 
radiation condition was applied at the outflow boundary once 
per fine-grid time step. On the inflow boundary, the coarse- 
grid model variables were interpolated in time to every fine- 
grid time step and then spatially interpolated to the boundary. 
Neither blending nor enhanced diffusion was used at the in- 
flow boundary. However, the simple 1-2- 1 filter was applied 
at all lateral boundaries, just as was done in the, sponge ex- 
periments. Test results indicated that this radiation scheme 
reduced, but not entirely eliminated, wave reflection at the 
interface compared with their sponge scheme (panels RAD 
and AVIS, respectively, in Figure 5). The sponge results are, 

Figure 5. Temperature at 81 1 mb (contour interval 5”  C) 
after 48 hours of integration of a three-dimensional 
barotropic model. From Miyakoda and Rosati (1977). 
REFl refers to the fine grid hemispheric model and 
REF2, the coarse grid hemispheric model. The other four 
plates show results with one-way nested grid boundary 
conditions: (RAD) test using the radiation scheme and 
boundary adjustment; (A) test using REF2 data for FMG 
boundary values, Asselin filter, and boundary and 
hydrostatic adjustments; (Y) same as (A) except use of 
REFl values for direct replacement at FMG boundaries; 
(AVIS) test of sponge scheme which employs both boun- 
dary adjustment and enhanced viscosity. Both RAD and 
AVIS used REF2 model data with no blending for the 
boundary conditions. See tables 2 and 3 for model details. 

with the exception of one boundary, overly smoothed because 
of the harsh viscosity effect used by Miyakoda and Rosati 
(1977) in their sponge scheme (compare plates AVIS and A). 
They found the Euler-backward time marching scheme (used 
also in the MASS model) difficult to use with the radiation 
scheme tested; therefore, they switched to a leap frog time 
scheme with use of a time filter (Asselin, 1972). They also 
noted that their results were noisy when hydrostatic 

equilibrium was not maintained along boundaries located over 
detailed mountainous terrain. A hydrostatic correction to the 
surface pressure, P,, was calculated according to 

where% is the interpolated topographic height obtained from 
the coarse-mesh terrain. The Asselin time filter and 
hydrostatic adjustment were included in experiments A, Y, 
RAD, and AVIS in Figure 5. 

Davies (1983) cautioned that the utility of radiative boun- 
dary schemes is doubtful whenever diabatic heating or strong 
orography are in the vicinity of the boundary. These effects 
cannot be expected to be treated well since the phase veloc- 
ity for only one portion of the wave spectrum is being 
calculated by (9), and the Sommerfeld problem only provides 
for an asymptotic solution far from the energy source for 
waves. Thus, boundaries should be kept away from areas of 
strong latent heat release and mountains where practicable. 

Mixed Schemes and MASS Model Applications 

Carpenter (1982) proposed a radiation scheme for use in 
nested-grid models that would blend the fine- and coarse- 
mesh variable tendencies at the interface. He obtained a 
generalized radiation boundary condition by applying (9) to 
both grids and assuming no inwardly propagating modes. This 
resulting equation, 

can be solved by using foward upstream finite differencing 
as suggested by Miller and Thorpe (1981). However, it is 
important to note that the derivation of (3.17) assumes that 
the phase velocities for both the coarse- and fine-mesh grids 
are equal, yet this is incorrect according to Oliger and Sund- 
strom (1978). It can easily be shown that the following 
equation results when this assumption is not made. 

Unfortunately, Carpenter’s proposals have not yet been tested 
in a nested grid model. Furthermore, solving the finite dif- 
ference form of the wave equation on a nonstaggered grid 
may create additional interpolation error and noise (Miyakoda 
and Rosati, 1977). This is also relevant since the current ver- 
sion of MASS uses a nonstaggered grid. 

Because of the limited use of radiation conditions in 
nested-grid models and the fact that Carpenter’s generaliza- 
tion has never been evaluated, the success of such a scheme 
in a mesoscale model is uncertain. Furthermore, since 
variables must be stored from the previous two time steps 
[see (12)-( 16)], the radiation condition requires somewhat 
more computer space and time allocations than the sponge 
schemes. Despite these drawbacks, the successful use of the 
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radiation condition by Miyakoda and Rosati (1977) and 
positive evaluation of it from a theoretical perspective war- 
rants testing of Carpenter’s (1982) scheme with the MASS 
model. The only other one-way nesting schemes with poten- 
tial for use in a mesoscale model seem to be the sponge blen- 
ding strategy developed by Perkey and Kreitzberg (1976) and, 
pehaps, the untested flow relaxation scheme of Davies (1983). 

It should be noted that none of these schemes attempt to 
maintain any kind of dynamical or hydrostatic balance at the 
nested grid interface. Clearly hydrostatic imbalances are likely 
to develop because of the separate handling of the pressure, 
temperature, and velocity fields by the schemes. Miyakoda and 
Rosati (1977) have presented an approach for restoring 
hydrostatic equilibrium when it has been upset by the presence 
of mountains along the interface. This technique for adjusting 
the surface pressure, as well as other procedures for maintain- 
ing hydrostatic equilibrium and preventing the formation of 
superadiabatic lapse rates above the surface layer, must be con- 
sidered when performing the MASS model experiments. 

TWO-WAY INTERACTIVE NESTING 
TECHNIQUES 

In this section, strategies used in two-way interactive 
nested grid models are reviewed. In particular, mesh struc- 
tures, interface conditions, noise control techniques, time 
marching procedures, and general model charactcristics are 
discussed. Table 4 presents some aspects of the two-way 
strategies found in our literature review, and Table 5 describes 
general characteristics of the nested grid models. These tables 
will be referred to frequently later in this section. The en- 
tries in these tables are similar to those in Table 1 of Zhang, 
et al. (1986), with these exceptions: 

Our tables include additional entries for interpolation type, 
mesh structure, grid ratios, form of finite difference equa- 
tions, statistics regarding the model spatial and temporal 
differencing, and consideration of diabatic effects. 
More specific descriptions of methods used for inter- 
face conditions and noise control appear in our tables. 

Model 
Reference 

Birchfield (1960) 

Ookochi (1972) 

Harrison (1973, 
1981), Hamson 
& Elsbeny (1972) 

Phillips and 
Shukla (1973) 

Mathur (1974) 

Elsbeny & Ley 
(1976). Ley & 
Elsbeny (1976) 

Jones (1977a,b) 

Phillips (1979) 

Kurihara, et al. 
(1979), Kurihard 
& Bender (1980) 

Zhang. et al. 
( 1986) 

TABLE 4. Summary of two-way nesting techniques used in various models 

Interface 
Condition 
for FMG 

Variable 
interpolation 

Weighted 
mean variable 
interpolation 

Tend en c y 
interpolation 

Variable 
interpolation 

Variable 
interpolation 

Tendency 
interpolation 

Tendency 
interpolation 

Variable 
interpolation 

Variable 
interpolation 

Tendency 
interpolation 

Type of 
Interpolation 

Linear 

Linear 

Cubic Lagiange 

Polynomial 

Cubic Lagrange 

Cubic Lagrange 

Cubic Lagrange 

Bilinear 

Linear 
conservative 

Lagrangian + 
cubic spline 

Interface Condition 
for CMG 

Value replacement from 
FMG at common points 

Weighted mean averaging 

25 point area averaging 
(in 3-D) 

Interpolation of staggered 
FMG values 

9 point averaging 

9 p i n t  averaging 

9 point Shuman filtering 

Interpolation of staggered 
FMG values 

Modified “Box” method 

9 point Shapiro filtering 

Mesh 
Structure 

Adjacent 

Adjacent 

Adjacent 

Separated 
by 2 Ax, 

Adjacent 

Adjacent 

Overlap 

Separated 
by 3.5AxC 

Separated 
by 2Ax, 

Separated 
by 2Ax, 

Ratio & 
(No.) of 

Grids 

2:1 or 
4:1(N=2) 

2:1(N=2) 

5:1(N= 
2 or 3 )  

2: I(N=2) 

2:I(N=2) 

2:1(N=3) 

3 :  I (N = 3 )  

2: 1(N=3) 

3 : l  or 
2: I (N = 3 )  

3 :  1 (N =2) 

Conser- 
vation 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

No 

Noise Control at the 
Interface 

Laplacian diffusion 
everywhere + Euler- 
backward periodically 

_ _ _  

Laplacian diffusion 
everywhere 

Laplacian diffusion 
everywhere + Euler- 
backward periodically 

Interfacial smoothing + 
upstream differencing 
on outflow interface 

Smoother every 3 hrs. 
on FMG 

Laplacian diffusion on 
FMG + “Box” 
method periodically 

Laplacian diffusion 
everywhere + implicit 
Newtonian damping 
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TABLE 5 .  General characteristics of numerics and physics in various two-way nested grid models 

No 

No 

No 

No 

No 

No 

No 

Yes 

No 

Yes 

Model Model 
Reference 

None 

None 

Ana!ytic 
convective 
heating 

None 

Cumulus param 

Analytic 
convective 
heating 

Cumulus param 

Cumulus param 
+ large-scale 
precip 

Moist 
convective 
adjustment 

Cumulus param 

Birchfield (1960) 

Ookochi (1972) 

Hamson (1973, 
1981), Harrison 
& Elsbeny (1972) 

Phillips and 
Shukla (1973) 

Mathur (1974) 

Elsbeny & Ley 
(1976). Ley & 
Elsberry (1976) 

Jones (1977a,b) 

Phillips (1979) 

Nondivergent 
barotropic 

S’lallow 
water wave 

2-D & 3-D 
P.E. 

Kurihara, et al. 
(1979). Kurihara 
& Bender (1980) 

Centered 

Arakawa 
Jacobian 

Centered 

Centered Shallow 
water wave 

3-D 
P.E. 

2-D & 3-D 
P.E. 

3-D 
P.E. 

3-D 

No 

Yes 

No 

Yes 

I P.E. 

1 

4 

I-D & 3-D 
P.E. 

300 

83 
(40) 

Zhang, et al. 
( 1986) 

... 

Arakawa 
Jacobian 

Form of Finite 
Difference 

Eqns. 

Advective 

Flux 

Flux 

Advective 

Advective 

Flux 

Flux 

Flux 

Flux 

Flux 

No 

No 

Time 
Difference 

Scheme 

Centered 

Centered 

Modified 
“box” 
method 

Arakawa 
Jacobian 

Leapfrog 

Euler- 
backward 

Leapfrog 

Lax- 
Wendroff 

Quasi- 
Lagrangian 
advective 

Leapfrog 

Euler- 
backward 

Lax- 
Wendroff 

Modified 
Euler 
backward 

Brown- 
Campana 

Yes 

Yes 

No 

Yes 

Space 
Difference Staggered 

Scheme 1 Amys 

Mesh Structure and Time Marching Procedures 
The choice of mesh structure will determine to some 

degree how much noise will be generated at the interface 
boundary and also the complexity of the nested-grid code. 
Two types of mesh structures have been used extensively, 
with the single exception of Jones’ (1977a,b) scheme 
discussed below (Table 4). These will be called the 
“adjacent” and the “separated” mesh structure in this 
review. 

The adjacent mesh structure is the simplest and, prior to 
the last decade, the one most commonly used (Birchfield, 
1960; Ookochi, 1972; Harrison and Elsbeny, 1972; Harrison 
1973, 1981; Mathur, 1974; Ley and Elsbeny, 1976). Figure 
6 gives an example of this type of mesh from the triply nested 
model of Harrison (1973). Boundary values are specified at 
each of the two-way interactive mesh interfaces. Time 
marching for this type of grid structure proceeds from the 
coarsest to the finest and back again, as described in Figure 
7. The CMG is integrated one time step (points A to E), the 
MMG (medium mesh grid) boundaries are updated from 
spatial and temporal interpolation of the MMG-CMG 
interface values, and the MMG is then integrated one MMG 
time step (points A to C). For this case, two time steps are 
taken in the FMG to raise the solution to the MMG timestep 
(point C). The FMG boundary values are supplied through 
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Figure 6. Example of a horizontal level in a triply nested 
grid model using an adjacent grid mesh structure. For this 
example, each of the smaller grids uses one-half the spatial 
increment of the next larger (Harrison, 1973). 



I 

4AtFMG) 

on both grids as the result of overspecification when using 
a single interface (Zhang, et al., 1986). 

Figure 7. Schematic to indicate the time marching process 
in a two-way, triply nested grid model. The heavy line 
indicates any arbitrary position in time after the first time 
step, with the time between each point on the line 
representing one FMG time increment (Hamson, 1973). 

interpolation from its interface with the MMG. Finally, the 
finer grids are raised to the coarse grid time by repeating the 
above technique from points C to E. The two-way interac- 
tion is completed when the CMG internal boundary values 
are calculated by averaging surrounding MMG points. Thus, 
the forcing by the CMG and the feedback from the MMG 
to the CMG both occur at the same interface (similarly for 
the MMG-FMG two-way interaction). 

While the adjacent mesh structure is simple, it suffers 
from the fact that the interpolated values for the boundaries 
of the FMG are obtained from values on the surrounding 
coarser grid which have themselves been averaged or 
interpolated from previously forecast FMG values. Such 
interpolation between values which had themselves been in- 
terpolated presents an overspecification problem at the boun- 
daries, and numerical errors can result at the interface. One 
way to avoid these problems is to use a grid mesh structure 
which separates the CMG+ FMG input interface from the 
FMG- CMG feedback interface (Phillips and Shukla, 1973; 
Phillips, 1979; Kurihara, et al., 1979; Kurihara and Bender, 
1980; Zhang et al., 1986), an example of which is shown 
in Figure 8. This particular scheme uses a 2Ax,  separation 
interval. Notice that the CMG internal boundary (“feedback” 
or “mesh” interface) and FMG external boundary (“input” 
or “dynamical” interface) are separated. In some applica- 
tions, the FMG is actually extended to the input interface, 
thereby overlapping the CMG by a few grid points. This is 
done to simplify the interpolation or averaging done at the 
feedback interface. Either interpolated variables or their 
tendencies provide boundary conditions for the FMG at the 
input interface, whereas the FMG fields are either interpolated 
or smoothed to provide CMG field values for coincident 
points at the feedback interface (Table 4). This approach of 

U! ! ! ! ! !A! ! ! I I I I 

FEEDBACK (MESH1 
INTERFACE 

INPUT (DYNAMICA 

Figure 8. Separation of the input (dynamical) interface from 
the feedback (mesh) interface by a narrow zone A2 
(shaded) in a two-dimensional domain. Area A1 is the 
coarse mesh. From Kurihara and Bender (1980). Terms 
“input” and “feedback” are used by Zhang, et al. (1986) 
and in the present review. 

The time marching procedure for the interface separation 
approach proceeds as follows (Figure 8). In the first step, 
the prediction is made using the CMG timestep for the coarse 
grid area A, by using data in both areas A1 and A2 (outside 
the feedback interface). In the second step, the forecast values 
at the input interface are saved and used as boundary condi- 
tions for integrating over both the CMG within area A2 and 
the FMG within area B, but using the FMG time step for 
both domains. Hence, some type of time interpolation to the 
FMG time must be performed at the input interface boun- 
dary. This is done for a few time steps until the FMG time 
is udpated to the CMG time (as in Figuie 7). In other words, 
the input interface represents a change in temporal resolu- 
tion, whereas the feedback interface defines the boundary 
separating a change in spatial resolution (Clark and Farley, 
1984). This scheme is two-way interactive since the area out- 
side the input interface is influenced by inner area A2 in step 
1 and the inner area is affected by the outer CMG area in 
step 2. 

The mesh structure used by Jones (1977a,b) differs from 
all the above schemes in that the CMG is extended throughout 
the entire FMG domain. This use of grid overlays results in 
feedback from the FMG to the CMG at all coincident points 
within the FMG, not just at an interface or within a narrow 
zone of mesh separation. The FMG- CMG feedback is then 
accomplished through application of a 9-point smoother to 
the FMG data surrounding the CMG points. Despite use of 
this filter, noise grew throughout the interior of the FMG, 
which necessitated application of an additional filter near the 
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interface at alternate time steps. This was not surprising, con- 
sidering that CMG values within the FMG domain were con- 
tinually updated at the feedback step, yet no input to the FMG 
was provided by the CMG data in the interior of the FMG 
domain. 

Interface Conditions 
Interface conditions typically involve interpolating CMG 

variables or tendencies to obtain the boundary conditions for 
the FMG, and smoothing (averaging) FMG variables or tenden- 
cies to specify the interface conditions for the CMG (Table 4). 
Some modelers have sought to obtain an interface condition 
that conserves mass, momentum, and energy by requiring that 
the interpolation formula used to derive the FMG boundary con- 
dition be consistent with the averaging equation used to obtain 
the CMG boundary condition. Stated another way, the 
CMG- FMG interpolation formula and the FMG- CMG 
averaging p m s s  should be wersible. TheIefore, the averaging 
and interpolation formulas applied to any variable Q should be, 
respectively, of the form (Clark and Farley, 1984) 

and 
n 

1 =  1 (Axf). 2 +i = (AX,) @Ob) 

Where n is the integer ratio, Axf is the FMG grid size, 
Ax, is the CMG grid size, and and 0 can represent either 
prognostic variables or their tendencies over the FMG and 
CMG, respectively. These two linear equations ensure that 
mass continuity is not destroyed by the averaging process 
and that the process is fully reversible. They also conserve 
the higher moment variables to a very high degree. 

The modified “box” method used by Kurihara, et al. 
(1979), assures conservation of the first-moment variables (e.g., 
mass and momentum) across the mesh interface. According to 
the original box method of Kurihara and Holloway (1967), the 
flux divergence of any quantity from a given mesh box is 
calculated from the sum of fluxes across the interfaces between 
that box and contiguous boxes. The “modified box” method 
consists, in part, of linearly interpolating values across an in- 
terface instead of averaging them in order to reduce interfacial 
noise. Conservation is assured at the mesh interface by forcing 
the sum of the fluxes during step 1 of the interface separation 
technique to exactly equal the sum of the fluxes during step 
2 (Figure 8), as implied by (20a) and (20b). 

Jones (1977a) pointed out that the mass flux computed 
acorss the mesh interface in the box method is sensitive to 
slight numerical errors, because data from two different grids 
with slightly different solutions must be used. Zhang, et al. 
(1986), also noted that a conservative interface condition like 
the box method is extremely complicated on a staggered grid 
because of the irregularly shaped boxes at the mesh inter- 
face. It is for these reasons that most modelers have avoided 

the conservation condition, instead opting for a simpler 
interface condition that produces smooth solutions at the ex- 
pense of exact conservation. 

A wide range of interpolation formulae have been used 
to obtain the FMG interface values from the surrounding 
CMG grid points (Table 4). Blechman (1980) found that an 
overlapping quadratic Lagrangian interpolation gave better 
fits than a linear interpolation because of the inability of the 
latter to maintain continuous second derivatives (thus, over- 
smoothing the CMG data). Clark and Farley (1984) 
developed a unique quadratic formula employing a variational 
constraint that guarantees the conservation relation discussed 
above. However, a Lagrangian type interpolation appears to 
be the most common type of interpolation. 

In contrast, various types of averaging methods for updating 
the CMG interface condition from the surrounding FMG grid 
points have been used (Table 4). Direct replacement of CMG 
grid point values with coincident FMG values is the simplest 
but least desirable approach, as the exceptionally noisy forecast 
fields displayed by Birchfield (1960) reveal. Since those early 
experiments, some kind of smoothing or averaging has been 
used to update CMG interface values. The only exception to 
this tule is the occasional use of interpolation methods in the 
case of complicated staggered grids (Phillips and Shukla, 1973; 
Phillips, 1979; Blechman, 1980). 

Noise Control 
Noise is always generated at the mesh interface, since 

there is an abrupt change in grid size and time step. This 
noise generally takes the form of wave reflection, as discussed 
earlier. According to Jones (1977b), scattering and interference 
of waves will cause significant noise when the distu&ance on 
the CMG is poorly represented. External wave reflection is 
usually minor, since these waves are typically controlled by 
a damping time-integration scheme (e.g., Euler-backward 
method). However, internal wave motions may persist, since 
waves advected from the FMG to the CMG can be reflected 
at the nest interface, resulting in short-wavelength noise pat- 
terns across the FMG. Jones (197%) found that advected waves 
with wavelengths A<6Ax, are totally reflected upon reaching 
the interface. The reflection of both gravity and advective waves 
at the interface can be considered to be a product of 
overspecification of the interface condition. 

Five methods of noise control have been used in two-way 
nested grid models (Table 4): smoothing operators, enhanced 
explicit diffusion, interface conditions modified to remove 
overspecification, damping time-integration schemes, and mesh 
separation schemes. The smoothing and diffusion operators 
outlined earlier (Table 2) can be applied in both one- and two- 
way nested grid models. Jones (1977b) mentions that interface 
conditions modified in such a way as to remove the overspeci- 
fication problem are both very difficult to employ and not totally 
precise in three-dimensional models. Therefore, this method 
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of noise control has not been widely used and will not be 
discussed here. 

Jones (1977b) used a smoothing operator developed by 
Oliger, et al. (1970) near the interface to control noise and 
found it to be a very effective strategy. Best results were 
found when he smoothed a large number of points near the 
boundary with a weak filter. Forecast fields obtained with 
no interface smoothing were totally contaminated by noise 
(Figure 9a), whereas those obtained by using a strong filter 
on the 2 rows and columns closest to the interface were much 
improved (Figure 9b). Further reduction in noise was 
accomplished by using a less harsh filter (Figure 9c) and by 

A 

C 

calculating advection at the interface using upstream differ- 
encing instead of centered differencing (Figure 9d). It should 
be recalled that the use of a gradually increasing viscosity 
coefficient in one-way nested models has been found to pro- 
duce the most satisfactory results. Thus, it would appear that 
no matter whether enhanced viscosity or filtering is applied 
near the interface to control noise, they should not be applied 
abruptly. This is not to say, however, that it makes little dif- 
ference whether filters or diffusive operators are used, since 
some filters can be very selective about which wavelengths 
are filtered out of the fields. 

D 

Figure 9. Mid-tropospheric vorticity fields ( s-') associated with an analytically initialized tropical cyclone as forecast 
by a three-dimensional, two-way nested grid model (Jones, 1977b). Noise controlled by (a) no smoothing, (b) strong 
smoothing at two grid points closest to interface, ( c )  weaker smoothing but at six grid points closest to interface, (d) as 
in (c) but with upstream differencing at interface for winds at outflow points. 
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Tests with different degrees of viscous dissipation in two- 
way nested grid models have been performed by Kurihara, 
et al. (1979). These tests were performed with both linear 
and nonlinear viscosity formulations in a one-dimensional 
shallow water wave model to see whether a wave train would 
propagate freely from the CMG domain into the FMG do- 
main (grid ratio of 2: l )  and out again to the CMG domain 
without causing any significant noise when viscous diffusion 
terms were added to the wave equations. Such a test was 
needed because the diffusion coefficient K varies according 
to some power of the grid increment in either formulation. 
The results (Figure IOa,b) show that both linear and nonlinear 
viscosities reduced the amplitude of these well-resolved 
waves (A = 10Axc) in the channel from their original 
geopotential value of 10oO m2s-2, but no noise was 
generated at the mesh interfaces. The authors also noted that 

t = 4ah 
(a) NON-LINEAR VISCOSITY (b) LINEAR VISCOSITY 

Irn -k. = 0.1 -- 0.2, ... 0.4 

-1 + ( c )  ORIGINAL BOX-METHOD (d) EULER-BACKWARD 

300 km  AX,) wave train (Figure 1 lb) show that for waves 
resolved in the CMG by less than six grid points, irregularities 
in the predicted fields bccamc unmanagcablc, especially in 
the FMG domain, as the waves are reflected at the interface 
back into the domain. The addition of nonlinear viscosity does 
produce smoother solutions (Figure l lc) ,  but the wave 
amplitude is significantly damped throughout the entire FMG 
domain (where it is sufficiently resolved). The effect of using 
a damping time integration method (the Euler-backward 
method) for noise control is also seen to overdamp the solu- 
tion even without including viscosity (Figure 1 Id). Although 
Kurihara, et al. (1979), claimed that these tests indicate that 
effective noise control can be achieved in their nesting scheme 
by including viscous and time-damping schemes, we sug- 
gest their results may have yielded more accurate solutions 
had they employed increased viscosity only near the mesh 
interfaces where noise was being generated. Our suggested 
approach should preserve the amplitude of the 10Axf wave 
train in the interior of the FMG, and simultaneously remove 
the destructive effects of wave reflection caused by the 
inability of the CMG to resolve this wave train. 

w 
c3 
Figure IO. Forecasts at 48h of a train of 600 km waves in 

a two-way nested grid model with (a) nonlinear viscos- 
ity (proportional to value of k, shown) and (b) linear 
viscosity. Results of integration without viscosity by both 
(c) the original “Box” method and (d) the Euler-backward 
scheme are also shown. Dashed lines denote the mesh 
boundary (Kurihara, et al., 1979). 

results using the “modified box-method’’ discussed earlier 
were improved over those using the original method (Figure 
IOc). The modified Euler-backward time integration method 
did a poorer job of preserving the amplitudes of these long 
wavelength features than did results from the original scheme 
(Figure 10d). 

The 600 km wave train in Figure 10 was adequately 
resolved by the CMG so that little reflection was noticed. 
The model was also run for a case where the waves would 
not be properly resolved by the CMG. The results using a 

I I 
(ci NON-LINEAR 

300 VISCOSITY t=48h 

0 
- 300 
300 
0 

- 300 

-300 

I t  
(d) EULER-BACKWARD’’ 

SCHEME t = 48h 

NO VISCOSITY E*+ 
NON-LINEAR VISCOSITY 1 / - k O = O . l i  j 

Figure 1 1. Integration of a train of 300 km waves in a two- 
way nested grid model. Geopotential fields are shown at 
(a) t = 0, (b) t = 48h, obtained without viscosity, (c) 
t = 48h, with viscosity and (d) t = 48h, computed by 
the Euler-backward scheme. Dashed lines denote nested 
mesh boundary (Kurihara, et al., 1979). 

Table 4 shows that a Newtonian-type damping scheme 
was added to the momentum equations near the interface by 
Zhang, et al. (1986). Kurihara and Bender (1980) had used 
a similar scheme at the outer lateral boundaries of the CMG 
in their model. The Newtonian-type damping effect is 
represented in the equation of motion by a term of the form 
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-b 
+ +  

(21) 

where V, is a reference wind value obtained from some 
average of surrounding wind values at the latest time level, 
and td is the relaxation time, which varied from 20 At at the 
top of the model to 100 At at the lowest model layer. 

Most of the earlier models reviewed (Table 4) only used 
a combination of diffusion throughout both the FMG and the 
CMG domains and some form of a damping time integra- 
tion scheme periodically during model simulation to help con- 
trol noise (Harrison and Elsberry, 1972; Hamson, 1973; 
Elsberry and Ley, 1976). Later models included some type 
of (a) smoothing function, either throughout the entire FMG 
(Phillips, 1979) or just at the interface (Jones, 1977a,b), or 
(b) enhanced diffusion over the FMG (Kurihara, et al., 1979; 
Kurihara and Bender, 1980) to better control the noise. 
Finally, the method of noise control already mentioned in 
Section 4.1, namely, the separation of the input interface from 
the feedback interface, has been found by Zhang, et al. 
(1986), to also significantly reduce noise. 

av  - = ..... (V -VI) I t(j 
a t  

General Model Characteristics 
Most of these models, as well as those which used one- 

way nested grids (Table 3) have used grid ratios AxJAxf 6 4 
(Table 4). One reason for this is that higher grid ratios require 
too many FMG points to adequately resolve the CMG waves. 
Moreover, aliasing problems arise, and interfacial noise becomes 
unacceptably large. 

General characteristics of a number of hydmtatic, two-way 
nested grid models are listed in Table 5. Most models, par- 
ticularly those since 1976, have used the flux form of the 
primitive equations because of its conservative properties. Also, 
nearly atl of these nested grid models in employed a damping 
type of time integration scheme, such as the Euler-backward 
or Lax-Wendmff method. In fact, even those models which 
used the leapfrog scheme (which is not amplitude damping) 
also utilized the Euler-backward scheme periodically as a 
means of noise control (Table 4). 

In contrast to the nearly universal use of the conservative 
flux form of the primitive equations during the past decade, 
only Kurihara, et al. (1979) and Kurihara and Bender (1980) 
have stressed the importance of maintaining conservation in 
the space differencing formulae, which is achievable with 
the box method. Use of a nonstaggered grid greatly simplifies 
its application. Models that use staggered grids require more 
complex interface conditions, since the mass and momen- 
tum variables must be interpolated separately. Nevertheless, 
a staggered grid gives more accurate solutions over the whole 
model domain because of reduced truncation error. Of course, 
errors generated by the boundary conditions at the nest 
interface generally exceed the truncation errors. 

Many of the two-way interactive nested grid models in- 
itialized with real data (observations) have been developed 

for tropical cyclone studies (Table 6). It is for this reason 
that only the extratropical models of Phillips (1979) and 
Zhang, et al. (1986) have included terrain effects (Table 5). 
In fact, only Zhang, et al. (1986) developed a strategy for 
assuring that terrain data between the FMG and CMG in the 
separated region (Figure 8) are made compatible. This is 
accomplished by requiring that the final adjusted CMG and 
FMG terrain values be identical at coincident points in the 
overlap region, and that CMG and FMG terrain values in 
the overlap be consistent with the interface condition filter. 
The results of these experiments revealed that use of com- 
patible terrain conditions was indispensable in obtaining 
noise-free simulations of a jet streak as it passed over the 
Rocky Mountains, particularly when the interface was placed 
over the mountains. 

A majority of the nested grid models in Table 5 considered 
some type of diabatic (convective or radiative) effects without 
adversely affecting their results. Jones (1977a) stated that 
cumulus parameterization schemes which depend upon 
calculations of the moisture/mass convergence would be 
error-prone near the nest interface. However, it wouM appear 
that two-way interactive nesting is highly preferred to one- 
way nesting whenever strong diabatic effects are present near 
the interface, as suggested by Zhang, et. al. (1986). 

NESTED GRID INITIALIZATION 
Table 6 presents a summary of the various methods of 

analyzing and initializing the FMG and CMG model domains 
in both one- and two-way nested grid models. For the pur- 
pose of this comparison, only those models initialized with 
observational data are presented. Compatibility between the 
CMG and FMG analyses is not as important for one-way 
nested grid models as it is for two-way models, since the 
two grids are run independently in one-way simulations. This 
is apparently the reason that, as Table 6 shows, most one- 
way schemes first analyze an FMG which covers the whole 
CMG domain using real data and then read off the CMG data 
directly from the FMG analysis with no averaging. The single 
exception to this rule is the NASA/Langley version of the 
MASS model, in which the observed data are first analyzed 
over the CMG and then interpolated to the FMG. Hamson 
and Elsbeny (1972) point out that, in the absence of obser- 
vational data on the scale of the FMG, neither method will 
add any small-scale detail to the initial fields; such detail can 
develop only from forcing by the resolvable scales of motion 
or from parameterized sub-grid scale effects. 

Following these separate model analysis strategies, several 
alternatives exist for initializing the model field analyses. One 
option is to use the analyses without any further modifica- 
tion. Alternatively, dynamical balancing between the mass 
and momentum fields may be imposed upon the initial grid 
point data analyzed on the CMG and/or FMG. Finally, some 
type of interpolation formula and possibly smoothing may 
also be utilized without regard for dynamical balancing. 
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TABLE 6. Method of initialization used in various nested grid models employing the primative equations on real data 

Meteorological 
Reference 

Method of Initialization(’) 

Williamson and 
Browning (1974) 
Miyakoda and 
Rosati (1977) 
Leslie, et al. 
(1981) 
Baumhefner and 
Perkey (1982) 
Kaplan, et al. 
(1983) 

Birchfield (1960) 

Mathur (1974) 

Elsberry and Ley 
(1976), Ley and 
Elsbeny (1976) 
Phillips (1981) 

Harrison (1981) 

Zhang, et al. 
(1 986) 

Forcast 
Period 
(hr.1 

48 

48 

24 

48 

6 

48 

96 

48 

48 

48 

12 

Application I FMG 

One-way Nested Grid Models 

Hemispheric Circulation OA/I 

Baroclinic Wave OA 

Baroclinic Wave OA (mass)/ 

Baroclinic Wave SA (mass)/GEO 

Mesoscale convection Cubic spline INT 

BAL (momentum) 

(momentum) 

Two-way Nested Grid Models 

Hurricane INT 

Hurricane SA of DATA*/BAL (mass)/ 

Tropical cyclone SA (momentum)/ 
QG 

RT/BAL (mass) 

Hemispheric circulation Bilinear INT 

Tropical cylcone Cubic Lagrange INT/ 
Analytic circulation 
imposed/BAL (mass) 
Cubic spline INT/ Data* Mesoscale convection, 

jet streak over FMG* 

CMG 

Similar OA/I 

Read from 10-day FMG 
forecast over CMG domain 
Read from FMG analysis 
over CMG domain 
Read from FMG analysis 
over CMG domain 
OA/I 

SA 
Read from FMG analysis 
over CMG domain 

Hemispheric Hough analysis 
to obtain NDV/BAL (mass) 

OA 

OA/I (or BAL)/ Smoothed 
FMG* values used in 
overlap region(*) 

Footnotes: 
( I )  Symbols used in table defined as: OAil = objective analysis/static initialization procedure applied to data, SA = subjective analysis of data, BAL = 

some form of balance equation used to derive mass from momentum (or vice versa), INT = interpolation from CMG to FMG mesh, RT = “reverse 
telescoping” procedure (see text), DATA* = conventional data enhanced with mesoscale or other auxiliary data, FMG* = extended FMG domain, 
NDV = nondivergent winds, QG = quasi-geostrophic winds. 

(2) Model employs compatible terrain values for FMG and CMG in the overlap region (see text). 

Hamson ( 1973) tested the latter two types of initialization 
for the FMG of a tropical cyclone model. He represented 
the cyclone by a circularly symmetric, nondivergent vortex. 
His dynamical initialization employed the nonlinear balance 
equation to derive heights from the wind field following 
interpolation of the winds to the FMG. This dynamic 
initialization technique worked well. Harrison tested an 
alternative approach involving linear interpolation of the 
CMG data to the FMG without smoothing. This experiment 
produced unacceptable noise, so he advised against its use. 

Others, including Mathur (1974), Ley and Elsberry (1976), 
Kurihara and Bender (1980), Harrison (1981), and Clark and 
Farley (1984) have used dynamical initialization techniques 
to ensure balanced fields on the FMG. Phillips (1979) and 
Zhang, et al. (1986) first ensured balanced fields on the CMG 
and then interpolated the data to the FMG. Zhang, et al. 
(1986) and collaborators at Pennsylvania State University 
presently enhance the interpolated FMG fields with any 
available data at fine spatial scales. Mathur (1974) was the 
first to use detailed data for nested grid model initialization, 
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but his approach of subjectively analyzing fine-scale fields 
over the entire CMG domain is clearly impractical and un- 
necessary. Ley and Elsbeny (1976) agreed, however, that 
inclusion of fine scale data in the initialization allows the 
FMG to retain much greater detail. 

An alternative approach to that used by Mathur (1974), 
which does not require (but can use) fine-scale data, is the 
"telescoping-reverse telescoping" strategy suggested by 
Elsbeny and Ley (1976). This approach is based on the 
premise that, unless data are first specified on the FMG, small 
imbalances are created on the FMG by initializing the inter- 
face externally from the CMG, and that the resulting noise 
could contaminate the forecast. Their method is an adaption 
of the telescoping model that originated with Hill (1968) and 
is outlined in Figure 12 (as applied to three grids). It con- 
sists of the following five steps: 

separate analyses of the wind field are conducted for 
the CMG and an extended FMG (to obtain a proper 
interface condition with FMG resolution, the FMG is 
extended by four gridpoints) 
nondivergent winds for the FMG* (MMG*) domain 
are calculated from the stream function solved with 
boundary values given by the MMG (CMG). 
the stream function is recomputed for the FMG by 
using CMG boundary values 
the CMG is reinitialized with a nondivergent wind field 
computed from a Poisson equation that uses the recom- 
puted FMG stream function for its boundary values 
the mass field is determined from the nondivergent 
wind field by using the nonlinear balance quation. 

OBTAIN CMG. U. V 
PLUS U, V ON 
SLIGHTLY ENLARGED 

CALCULATE VORTICITY 

SOLVE FOR CMG STREAM FUNCTION 
SOLVE FOR MMG" STREAM 
FUNCTION WITH BOUNDARY 
VALUES FROM CMG 
SAME FOR FMG" WITH 
BOUNDARY VALUES FROM MMG" 

8 
$ 
$ 
$ 

~$ a 

c ? h 

ON CMG, MMG", FMG" 

EXTRACT FMG STREAM FUNCTION 
AND WINDS WITHIN MMG" 
AND SOLVE FOR STREAM FUNCTION 
IN DOMAIN SURROUNDING FMG 

AND WINDS WITHIN CMG AND 
SOLVE FOR STREAM FUNCTION 

NONDIVERGENT WINDS IN 
SURROUNDING DOMAIN 

SOLVE BALANCE EQUATION 
ON MMG" WITH BOUNDARY 
VALUES FROM CMG 
SAME FOR FMG" WITH 
BOUNDARY VALUES FROM MMG" 

EXTRACT FMG GEOPOTENTIAL 
WITHIN MMG" AND SOLVE 
BALANCE EQUATION IN 
DOMAIN SURROUNDING FMG 

EXTRACT MMG GEOPOTENTIAL 
WITHIN CMG AND SOLVE 
BALANCE EQUATION I N  
DOMAIN SURROUNDING M M G  

Figure 12. The telescoping-reverse telescoping strategy for initializing a two-way interaction, nested-grid model as described in 
the text. MMG* (Fh4G*) represent the slightly enlarged version of the nested medium (fine) mesh grids used during the initializa- 
tion phase only. Dashed boxes enclose the steps which would c~rrespond to a telescoPing a p p m h  alone (Elsbeny and Ley, 1976). 
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This technique forces the interface values to be part of 
the interior solution on an enlarged FMG grid, effectively 
bringing them close to dynamic balance with the FMG solu- 
tion without having to conduct a fine grid initialization 
everywhere. Zhang, et al. (1986) used a similar technique 
to obtain extended FMG fields within the separated mesh grid 
region (A2 in Figure 8). The nine-point Shapiro filter used 
for the CMG interface condition (Table 4) was also employed 
in region A2 to obtain coincident CMG point values within 
this region. Use of this technique resulted in excellent com- 
patibility between the initial fields on the two different 
meshes. 

SUMMARY AND RECOMMENDATIONS 
FOR EXPERIMENTS 

A survey of one- and two-way interactive nested grid 
schemes used in numerical weather prediction models has 
been accomplished in this report. The results of the survey 
can be used to make recommendations for which schemes 
have the greatest potential for testing with the MASS model 
(Kaplan, et al., 1982). The one-way approach, although it 
is simpler to encode on a computer, does not allow informa- 
tion from the fine mesh grid (FMG) to feed back to the coarse 
mesh grid (CMG). In a two-way nesting system, on the con- 
trary, the predictions for both the FMG and CMG proceed 
simultaneously so that information is continuously exchanged 
between the two grids. Boundary conditions specified at the 
interface between the two grids permit the CMG to affect 
the FMG through temporal and spatial interpolations of the 
CMG prognostic variables (or their tendencies), and further 
permit the FMG to feed back to the CMG by replacing coiil- 
cident CMG grid point values at the interface with those 
averaged from the FMG fields. The two-way strategy may 
be superior in cases where a small-scale atmospheric 
phenomenon can be expected to impact significantly on its 
larger-scale environment (as in the cases of mesoscale con- 
vective system, or the interaction of a jet streak with 
topography or boundary layer sensible heating). 

One-way Interactive Schemes 

Our review of one-way nested grid techniques indicated 
that two schemes which are stable and minimize short-wave 
noise created at the boundaly are the sponge blending scheme 
(Perkey and Kreitzberg, 1976) and the radiative boundary 
scheme (Orlanski, 1976). The flow relaxation scheme of 
Davies (1983) and Leslie, et al. (1981) may also merit testing 
in the MASS model, although it has not been applied to 
general flow situations. The advective extrapolation scheme 
(Williamson and Browning, 1974) does not merit testing with 
the MASS model because of its inherent instability. The 
sponge blending method in the form developed by Perkey 
and Kreitzberg (1976) will be coded into the MASS model. 

A low-pass filter that only dampens the shorter wavelength 
noise will be tested against the use of gradually increased 
horizontal diffusion near the boundary. The sponge (filter 
or diffusion) will be applied only after the blending of FMG 
and CMG tendencies has been accomplished, so as to gain 
maximum sponge effectiveness; furthermore, it will be 
applied every FMG time step. 

The forward upstream difference form of the radiation 
boundary condition suggested by Miller and Thorpe (1981) 
should be tested with Carpenter’s (1982) modification, which 
allows for blending with the CMG fields. Accordingly, the 
modified wave equation (19) should be used to account for 
a difference in phase velocity resulting from differences in 
grid sizes between the two meshes. A map scale factor such 
as the one used by Miyakoda and Rosati (1977) should also 
be included in the radiation scheme. Finally, a smoothing 
function may be tried near the boundary. Potential problems 
related to use of the radiative scheme at a nested grid inter- 
face where diabatic or strong orographic effects are occurring 
need to be evaluated in the MASS model experiments. The 
hydrostatic adjustment strategy developed by Miyakoda and 
Rosati (1977) to account for topography should also be con- 
sidered. Implementation of a radiation scheme could prove 
difficult, however, because of the use of the Euler-backward 
time marching scheme in the MASS model. 

Two-way Interactive Schemes 

Our review of two-way nested grid schemes showed that 
the mesh separation structures developed by Kurihara, et al. 
(1979), Kurihara and Bender, (1980), and Zhang, et al. 
(1986), were effective in reducing overspecification error at 
the nest interface, thus producing smooth, relatively noise- 
free solutions. We intend to evaluate these mesh strategies 
in the MASS model. On the other hand, we will not test the 
technique of totally overlapping the FMG and CMG domains 
and yet not permitting CMG input to the entire FMG do- 
main, (Jones 1977a,b). Schemes that conserve mass, momen- 
tum, and energy across the interface (such as Kurihara’s 
“box” method) will also not be tested because of their com- 
plexity and the fact that most investigators have found the 
conservation condition unnecessary in a hydrostatic model. 
We will examine the utility of an overlapping quadratic 
Lagrange (or, equivalently, cubic-spline) method of inter- 
polation for the FMG interface conditions. In addition, 
several different filters (averaging operators) will be tested 
for their utility as CMG interface conditions. Linear inter- 
polation formulae and, for the CMG specifications, direct 
replacement of CMG grid point values with coincident FMG 
values will be avoided due to their undesirable side effects. 
The recommendations made by Jones (1977b) concerning 
noise control at the interface will be considered in our nesting 
experiments. Specifically, we will use a smoothing operator 
at a relatively large number of points, together with weak 
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filtering near the interface. The relative effectiveness of filter- 
ing compared with enhanced horizontal diffusion near the in- 
terface will be examined. 

The desirability of having compatible terrain and initial 
conditions between the CMG and FMG in the model should 
also be evaluated for both one- and two-way nested grid 
schemes. Simulations with surface diabatic effects included 
near the interface will also be run in order to judge each 
scheme's performance when such conditions are present. 

Design of MASS Nesting Scheme Experiments 

The experimental design for the simulations will be like 
that used by Seaman, et al. (1985) in their nesting ex- 
periments, in that for each nested grid scheme to be tested: 

1) a coarse-mesh simulation will be run over the entire 

2) an extended fine-mesh simulation will be run over the 

3) a fine-grid simulation will be run over a subdomain 

The second experiment, which is a departure from Seaman's 
design, will be the control experiment from which the per- 
formance of each nested grid technique will be evaluated. 
The coarse-mesh model run will help provide a benchmark 
for demonstrating any possible improvement gained by using 
a nested grid model. Once the experiments are complete, final 
recommendations will be made as to which nested grid 
schemes proved most accurate and produced the least 
undesirable noise in the MASS model results. 

The current version of the MASS model at 
NASAILangley includes a one-way nested grid capability 
(Wong, et al., 1983). This particular version of the model 
has demonstrated limited success in handling deep convec- 
tion in Florida. We will evaluate the performance of this 
scheme relative to some of the other schemes described in 
this report. Currently, the MASS nested grid model employs 
a sponge-type boundary condition; however, significant wave 
reflection might occur because no blending is performed at 
the interface (Davies, 1983). Instead, coarse-grid variable 
tendencies completely determine the boundary and adjacent 
FMG grid point (B and B-I) values. At the next two inward 
grid points (B-2 and B-3), the coefficient of horizontal dif- 
fusion is abruptly increased to six times the interior value 
(1 X lo5 m2 s-'), which is another possible source of in- 
terfacial noise. Cubic spline interpolation is used on the coarse 
grid tendencies to update the values at the boundary points 
of the fine grid model. However, since the boundary values 
are only updated every 60 CMG time steps, poor wave resolu- 
tion and possible aliasing problems could arise. Other 
characteristics of the MASS nested model are summarized 
in Table 3. Appreciable short-wave noise developed in some 
of the results presented by Wong, et al. (1983), and the model 

model domain, 

entire model domain, and 

nested within the larger domain. 

forecasts were terminated after 6 houn of integration. These 
problems likely arose because of the abrupt and simple dif- 
fusion formulation method, inadequate frequency of updating 
the nest interface values, and because the CMG and FMG 
tendencies were not blended. 

The two-dimensional version of the MASS model will 
be employed in these nesting tests, both because of the vastly 
reduced computational expenses and the possibility of easily 
incorporating an analytically specified initial state whose 
time-dependent solutions are well known from theoq. One 
such state is the finite-amplitude extension of the Eady (1949) 
wave model of baroclinic instability, whose semi-geostrophic 
solution has been derived analytically by Hoskins and 
Bretherton (1972). Two-dimensional, Boussinesq solutions 
to the Eady problem have been obtained numerically with 
the aid of primitive equation models in the inviscid case by 
Williams (1976), and with various formulations of surface 
friction and vertical turbulent mixing of heat and momen- 
tum in the boundary layer by Keyser and Anthes (1982) and 
others. In all of these studies, a cold or occluded front forms 
as the result of a frontogenetical process whereby shearing 
deformation acts upon the temperature field. The well-known 
aspects of both the analytical and numerical solutions per- 
mits relatively easy initialization of the MASS model fields 
over both the FMG and CMG domains without introducing 
dynamical incompatibility. Furthermore, it allows testing of 
various nested grid schemes within a baroclinic environment 
similar in structure to that which actually occurs in the ex- 
tratropical atmosphere for which the MASS model was 
designed. Finally, diabatic effects can be included by 
allowing surface sensible heat effects to occur in the MASS 
model planetary boundary layer parameterization scheme, and 
so permit testing of the various nesting schemes under harsher 
(and even more realistic) conditions. 

An example of a 24-hour simulation of the Eady wave 
initialized into the MASS model with a 60-hour analytic solu- 
tion (i.e., an 84-hour solution) on a uniform mesh of 
Ax=40km and with 32 sigma levels appears in Figure 13. 
Periodic lateral boundaries and upper and lower level rigid, 
flat lids (A = h = 0 at (I = 0 and o = 1) are used as boun- 
dary conditions for the primitive equation model. An intense 
potential temperature gradient has developed near the center of 
the domain by this time (Figure 13a). The resulting vertical 
motion fields (Figure 13b) show a strong, themallydirect, 
transverse circulation with maximum upward motions of greater 
than 18 mb hr-' above the surface front. MASS has correctly 
predicted frontogenesis, c o m p a r e d  with the analytic results at 
84 hours (not shown). This simulation will act as the CMG 
dry adiabatic control case (experiment 1) and will be used in 
conjunction with the FMG control run when verifying simula- 
tions with one- and tweway nested grids. The FMG will have 
four times the resolution of the CMG (Axf = 10km). 

Diagnostic plots of model noise can be used to quickly 
judge the effectiveness of different nested grid techniques. 
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Figure 13. Results from a 24 hr. integration of the two- 
dimensional version of the dry, adiabatic MASS model 
initialized with an analytic Eady wave solution at t = 60h 
using Ax = 40 km and At = 60s. Shown are (a) potential 
temperature field (intervals of 2K), and (b) vertical velo- 
city field (intervals of 2 mb/hr) in the x-z plane. Horizon- 
tal grid domain size is 3900 km. 

section technique is an efficient and easy way to diagnose 
the development and propagation of model noise generated 
by the introduction of different kinds of nested grid strategies. 

Frontal-scale convergence and vertical motion patterns 
are illustrated by the fields in Fig. 14 c-d. However, a 
standing external gravity wave with an amplitude of 
n , ~ [ l ~ g - ~  ( -6.9) -log-'( -7.8)]/2 = 5.46 x 10-8mbs-2, 
corresponding to a wave in the surface pressure tendency of 
n, = 2.5 x mb s-l = 0.90 mb h-l, appears in 
Fig. 14a and b as the result of using a fully compressible 
primitive equation model to integrate the Boussinesq, Eady 
wave equations [Dan Keyser, personal communication]. 
These fields give magnitudes of background noise for the con- 
trol case. It is expected that significantly higher values of 
model noise will be present when nesting is included into 
MASS and that the noise should propagate inward from the 
nest boundary. These diagnostic plots will therefore be used 
to select the nesting technique that produces the least noisy 
model results, thus aiding in the evaluation of the various 
nesting schemes to be tested in the two-dimensional version 
of MASS. 

Finally, the most accurate one- and two-way nesting 
methods, as determined from the two-dimensional sensitivity 
tests, will be evaluated against each other for a three- 
dimensional simulation using observational data. Any deci- 
sion as whether to use either one- or two-way nested grid 
approaches in the MASS model may depend on what type 
of atmospheric phenomenon is to be simulated. These im- 
provements to the MASS model should permit more realistic 
simulations of finer scale circulations that include one- or 
two-way interactions with the large scale circulation. 
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Plots of the logarithm of the second and first derivatives of 
pressure (n = P ~ F c  - P~op)  with respect to time, vertical 
velocity at 700 mb, and surface mass flux divergence on a 
space-time cross section are shown in Figure 14. These results 
are obtained from the forecast just described. The cross 
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Figure 14. Results from the same model integration as Fig 
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. 13, showing various indicators of model noise contoured on 
a space-time diagram: (1) log a2Il/at2, (mb/s2), (b) log-an/at ,  (mb/s), (c) o (intervals of 2mb/hr) and (d) V-IlU, (in- 
tervals of 10 mb*/hr), where n = p,-Pt. Results in (a) are for the first 4 hour of integration following smoothing, while 
in (b) through (d), results are shown for the full 24-hour integration with no smoothing. 
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